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By Jerry C. South_ Jr.

SU_4ARY

Dorodnitsyn's integral method is used to obtain an approximate solution to

the supersonic nonequilibrium flow over pointed bodies with attached shock waves°

The partial differential equations governing the flow are converted to an approx-

imate set of ordinary equations_ which are solved by numerical integration

starting at the body tip.

Detailed analytical and numerical results for the first approximation are

presented 3 considering the vibrational relaxation of a diatomic gas over a wedge

or cone. It is shown that the first approximation yields:

(i) The exact flow-variable gradients at the wedge tip

(2) Expressions for the flow-variable gradients at the cone tip which are

in agreement with extrapolations of characteristics calculations

(3) A good approximate algebraic solution for frozen or equilibrium conical
flow

(4) An approximate expression for the nonequilibrium-flow stream function

which affords a means of obtaining variations across the shock layer

of the temperature and vibrational energy.

Numerical results for both the wedge and cone compare favorably with iden-

tical cases computed by the method of characteristics.

INTRODUCTION

At present there is considerable interest in the real gas effects associated

with the strong shock waves and extreme temperatures characteristic of hypersonic

flow. Such phenomena as molecular vibration_ dissociation; electronic excita-

tion_ ionization_ and radiation may occur and may cause large deviations from

ideal-gas aerodynamic behavior. In addition; a further complication is intro-

duced when the flow is not in thermodynamic equilibrium. An essential feature



commonto all nonequilibrium flows is the entropy changealong streamlines; thus
the temperature_ density_ pressure_ and velocity cannot be simply related along
a given streamline.

In flows which are entirely supersonic_ the method of characteristics is
available for exact numerical results. Sedneyet al. (ref. i) have calculated
the supersonic nonequilibrium flow over a wedgeby consideration of vibrational
relaxation in pure nitrogen. They noted_ however_ evidence of certain diffi-
culties which do not appear in similar ideal-gas calculations. First-order cal-
culations were found to be inadequate_ while second-order results dependedquite
critically on grid size. A judicious choice of dependent variables was necessar_
to insure success in any case. Someadded difficulties appeared when the proce-
dure was extended to nonequilibrium flow past a cone (ref. 2).

Flows with imbedded subsonic regions (mixed flows)_ such as the supersonic
blunt-body problem_ have been calculated by various means. Comprehensivesurvey_
of the blunt-body problem can be found in references 3 and 4. Oneof the methods
most frequently employed for calculating frozen or equilibrium blunt-body flows
is the inverse method (ref. 3), which starts with an assumedshock-wave shape
and finally results in a determination of the corresponding body shape. Lick
(refs. 5 and 6) used this method to calculate a nonequilibrium blunt-body flow,
in which vibrational relaxation and dissociation in oxygen and nitrogen were con-
sidered. He also noted certain stability and convergence difficulties_ apparent_
more severe than in frozen-flow calculations and dependent on grid size. Finally
it is worthwhile to note that the inverse method cannot be carried far into the
supersonic region of a blunt body (ref. 3), regardless of the thermodynamics, and
a changeover to the method of characteristics is necessary in order to obtain
results somewhatdownstreamof the sonic line.

In view of the problems associated with these methods in the calculation of
nonequilibrium flows_ it is desirable to investigate other techniques which are
more straightforward and which are readily adaptable to high-speed computing. I_
1958, A. A. Dorodnitsyn (ref. 7) described a method of integral relations which
has been used on a variety of classical aerodynamic problems. This method not
only has the above-mentioned advantages but can be continued into the supersonic
region of mixed-flow problems (ref. 8) with certain restrictions (ref. 9). In
supersonic-flow problems involving a shock layer_ the Nth integral approximation
is briefly outlined as follows: the region between the body surface and the shoc
wave is divided into N equal (for simplicity) strips. The governing partial dif-
ferential equations are then cast into a "divergence" form and integrated, from
the surface to the boundary of each strip_ over the coordinate normal to the sur-
face. The result is N integro-differential equations to replace each original
partial differential equation. To arrive at the final approximating set of
ordinary differential equations, Nth-degree polynomials are used for the inte-
grands of any appearing integrals. More specific details of this general proce-
dure can be found in references 43 73 and i0. The results of references 7 and i0
indicated that in the ideal-gas mixed-flow problems studied_ the convergence of
the method was rapid; the numerical results of the second approximation differed
little from those of the third. Traugott (refs. 8 and Ii) demonstrated that even
the first approximation was surprisingly accurate for the ideal-gas, supersonic_
blunt-body problem.
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Although the usefulness and versatility of the technique have been demon-
trated previously in ideal-gas_ mixed-flow problems (refs. 7_ i0_ ii_ and 12),
t has not yet been established that the method is applicable to nonequilibrium
lows. The results of such an application are reported in the present paper.
etailed analytical and n_nerical results using the first approximation are pre-
ented for the vibrationally relaxing flow of a pure diatomic gas past wedges
nd cones. Not only are these two shapes of classical interest in gas dynamics,
ut their use affords a direct comparison with results obtained in more exact
nalyses (refs. i and 2).

The author is indebted to R. Sedneyand N. Gerber of the Ballistics Research
aboratories_ Aberdeen Proving Ground_for assistance rendered during the forma-
ive stages of this work and for extensive characteristics calculations supplied
or direct comparison with the present results.

SYMBOLS

P

eq

= pu

_v

= p + 0u2

= p + pv2

= pv

frozen-flow specific heat at constant pressure

vibrational energy

equilibrium vibrational energy

0 or i for plane or axisymmetric flow

frozen-flow Machnumber,

pressure

gas constant

V

radial coordinate normal to axis of symmetry

temperature

velocity componentsin x and y directions 3 respectively

total velocity
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x_y

Z = puv

7

6

E

ev

9

P

q"

¢ = s/x

dO

coordinates along and normal to body surface

shock-wave angle, measured counterclockwise from free-stream directio:

ratio of frozen-flow specific heats

shock-layer thickness in y-direction

Eeq - E
vibrational driving force_

T

characteristic vibrational temperature

wedge or cone half-angle

shock-layer included angle_ _ - e

density

vibrational relaxation time

stream function

flow-deflection angle behind shock wave

oo

0

6

x=O

Subscripts:

free-stream quantity

quantity evaluated at surface (y = O)

quantity evaluated at shock wave (y = 8)

quantity evaluated at x = 0

Primed quantities are dimensional_ unprimed quantities are dimensionless,

as shown immediately preceding and after equations (i) to (6).

Barred quantities are corrected surface flow variables.
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ANALYSIS

Basic Equations and Definitions

The theoretical model used in this paper is that of the steady, inviscid,

[soenergetic flow of a pure diatomic gas. The relaxation of the molecular vibra-

tions is assumed to be the only dissipative mechanism in the flow. This model

is identical to that of references i and 2 and thereby affords a direct comparison

af the present results with the more exact calculations of those references.

Although it is relatively simple, the present model has most of the essential

features of isoenergetic nonequilibrium flows; namely, entropy production along

streamlines, an added term (the vibrational energy) in the ideal-gas energy

equation, and a rate equ_sion to describe the approach to equilibrium of the addi-

tional degree of freedom. The perfect-gas equation of state is used.

The governing partial differential equations are written in a body-oriented

coordinate system, with x,y the coordinates along and normal to the body sur-

face. In the cases to be studied the approach to equilibrium is quite rapid, so

that the region of interest is confined to a small area in the shock layer near

the body tip. The characteristic time scale is thus chosen to be the vibrational

relaxation time just behind the shock wave at the body tip, Ti,x= O. The char-

acteristic length is V'_' In general, the relaxation time is a function of_'5, x=O"

temperature and pressure, and in references 1 and 2 this variation was approxi-

mated by

-i-I

pt

where the constant C was determined from experimental data. Reference i demon-

strated that the variable relaxation time produced only a secondary effect in the

numerical results; that is, the approach to equilibrium was somewhat retarded,

but all variables reached the same asymptotes as those for T' = Constant. The

experimental constant C is another initial parameter for a given numerical

example, and to simplify the problem, the assumption is made for the present that

T' = T' = Constant.
5,x=O

In dimensionless form the basic equations are as follows, with j = 0 or i

for plane or axisymmetric flow:

Continuity:

-_(ourJ)_x + _(pvrJ) = 0 (i)

x-momentum:

+v = 0 (2)p



y-momentum:

av a_xv+ 1 _ 0 (3)
u +v y p by

Rate:

U _X + V - g = 0
(4)

_ergy:

T + E + Y - i M 2V2 = i + 7 - i M 2
2 2

(5)

State:

Because the present paper is especially concerned with the flow past wedges

and cones, terms arising due to body curvature are omitted in equations (i)

to (4). The inclusion of these terms presents no added difficulty, and the ext¢

sion of the present work to arbitrary smooth pointed shapes is a simple matter.

The reference velocity, temperature, and density are V_', T_', and P_',

respectively. The reference pressure is p'V '2, while the vibrational energy

is referred to cp'T_'. The rate equation (4) is that used by Bethe and Teller

(ref. 13) and also in references I and 2. The quantity _ is a "driving force'

given as

c = Eeq - E (7)

where Eeq is the vibrational energy that the flow would have locally if it wel

in thermodynamic equilibrium and is taken to be, as in references i and 2,

2 ev xp
Eeq =

(8)

The equilibrium vibrational energy Eeq is then a function of only the local

temperature, and 8v is the characteristic vibrational temperature, a constant

for any particular gas, referenced to T_' The factor 2/7 is the ratio R Cp

for an ideal diatomic gas (7 = 7/5)-



The geometry and coordinate sys-
tem for a cone are illustrated in
figure i.

Divergence form.- The notation

of references i0 and ii is convenient

for use in defining the following

quantities:

Shock wave

Free stream s_

Streamline

t = pu

h = pv

z = puv

g = p + pu 2

H = p + pv 2

(9)

After each of equations (2), (3),

and (4) is multiplied by or J, and

when the continuity equation and the

derivative chain-rule together with

the definitions (eqs. (9)) are used,

equations (i) to (4) can be written
as follows:

Figure i.- Geometry and coordinate system

(cone illustrated).

---_(trj) + _---(hrj) = 0 (i0)

_x

_(grJ) + _ (zrJ) - jp sin 8 = 0 (il)

_-_(zrJ)+$x _ (Hrj) - jp cos 8 = 0
(12)

-_(tErJ)_x + _ (hErj) - PcrJ : 0
(13)

where r = x sin B + y cos @ for the cone. This form of the equations is some-

times referred to as the divergence or conservation form. It is a basic step

in the method of integral relations, affording a straightforward procedure for

converting the partial differential equations to an approximate ordinary set.



Conversion of Equations to Ordinary Differential Equations

With equations (i0) to (13) written in the convenient divergence form, they
can be converted to an approximate set of ordinary differential equations by inte
gration over the variable y, so that x is left as the single independent
variable. (The equations could be integrated over x, with y as the single
independent variable. The geometry and coordinate system suggest, however, that
the present procedure will give the best results.) As mentioned in the "Introduc
tion," the method consists of N approximations, with the shock layer divided into
N equal strips.

First (one-strip) approximation.- In this analysis, only the first approxi-

mation, in which the entire region between the shock wave and body surface is
treated as a single strip, is considered. Equations (i0) to (13) are integrated

from y = 0 to y = 5j with linear profiles being used for all integrands. The

following boundary conditions are used:

At y = %

v0 = h0 = z0 = 0 (14a)

At y = 5,

% -- o (14b)

The first condition states that the wedge or cone surface is a streamline, while

the second states that the flow is frozen across the shock wave. The tempera-

ture ahead of the shock wave is assumed to be such that the free-stream vibra-

tional energy is negligible, or F_ = E_ = O. From the shock-wave geometry, it

can be seen that

d5
- tan h (15)

dx

where h = _ - 8. When equations (14a), (14b), and (15) are used, the integra-

tion of equations (i0) to (13) yields the following ordinary equations:

__ dt5
x¢ dt0 + x¢(l + j¢ cot 8)_-- + (tan _ + j¢)t 0dx

- (tan _ - j_)t 5 + 2(1 + j_ cot 8)h 5 = 0 (_6)

x_ dg---qO+ x_(l + j_ cot e)_-_ + (tan _ + J_)go - (tan h - J_)g5
dx

+ 2(1 + j¢ cot 8)z 8 - J¢(P8 + PO) = 0
(17)
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x_(l + j_ cot 8)dz_ _ (tan _ - j_)z 5 + 2(1 + j_ cot 8)H 5
dx

- 2P0 - j_ cot 8(p 8 + PO) = 0
(18)

x_ _(toEo)d + (tan _ + j_)toE 0 - X_oC 0 + (1 + j_ cot 8)p5c _ = 0 (19)

where ¢ : 5/x. The steps necessary in arriving at equations (16) to (19) are

given in appendix A.

Equations (16), (17), and (18) are valid, within the first approximation,

regardless of the thermodynamic behavior of the gas (frozen, equilibrium_ or

nonequilibrium flow). They express the conservation of mass and momentum, and

no form of the energy equation (5) or equation of state (6) has yet been used.

Equation (19) is specifically for nonequilibrium flow; for frozen flow T' =

and thus E = 0 throughout the shock layer. On the other hand, for equilibrium

flow, T' = 0 and E(x',y') = Eeq(X',y') , and the rate equation is indeterminate.

In this latter case, the proper differential equation for E is:

u _E +V_x' _Y'_E_ _(Eeq)22, eOv/T_T2 _r +V_x' _) (20)

and the length scale V_'T' is no longer appropriate.
5,x=0

Before the nonequilibrium-flow calculations are attempted, it is convenient

to study the special cases of frozen or equilibrium flow by use of equations (16)

through (18). In the case of the wedge, the complete exact solution is obtained

merely by solving the appropriate (frozen or equilibrium) shock-wave relations.

The cone solution is more difficult and is discussed in the following section.

Frozen or Equilibrium Flow Past a Cone

In the study of the steady, inviscid, frozen or equilibrium flow past a

cone, there is no length scale. Similarity considerations yield exact, non-

linear, ordinary, differential equations which must be solved numerically. In

this section algebraic expressions are derived and give an approximate solution

for frozen or equilibrium cone flow.

In this case the shock wave must be straight and flow properties are constant

along the cone surface. Then for all values of x,

: tan Z (21)

9



and

df 0 df8

dx dx
-0 (22)

where fo and f5 represent any function at the cone surface and just behind

the shock wave, respectively. Using equations (21) and (22) in equations (16),

(17)3 and (18), and setting j = 1 yields the following expressions:

t O + (cot _ + cot e)h 5 = 0 (23)

2Uot 0 + 2( cot h + cot e)ubh 8 + (Po - ps) = 0 (24)

2(cot h + cot e)vsh8 - (2 cot h + cot e)(po - PS) = 0 (25)

If PO - P6 is eliminated from equations (24) and (25) and equation (23) is

used in that result the following relation is obtained:

v6
u0 = u_ + (26)

2 cot _ + cot e

The use of the appropriate (frozen or equilibrium) shock-wave relations, the

energy equation (5), and the equation of state (6), together with equations (23),

(25) , and (26), allows a complete solution of the problem.

Again it should be recalled that equations (23) to (26) are valid within

the first integral approximation, not only for frozen flow but also for full

equilibrium flow, including chemical reactions and ionization. The particular

thermodynamic model enters the solution by use of the proper energy equation,

equation of state, and shock relations. It is interesting to note that the

assumption of isentropic flow was not necessary.

Chushkin and Shchennikov (ref. 14) used the method of integral relations to

calculate ideal-gas flows past cones without axial symmetry. They arrived at an

algebraic solution for circular cones at zero incidence similar to the one derivec

in this section, with the following differences. In reference 14 spherical-polar

coordinates were used_ and the isentropic law (p _ pT) was used in place of the

momentum equation along rays. In the present paper, the isentropie law is not

contained in the system of equations_ and because the solution is approximate,

it is not exactly satisfied even in the special cases of frozen or equilibrium

flow. Instead_ the x-momentum is approximately conserved throughout the shock

layer, so that equation (24) results. Although the present approach and that of

reference 14 agree numerically at the higher Mach numbers, the present method

gives closer agreement to the exact solution in the lower Mach number range. The

comparison seems to indicate that the present method yields a more uniform

approximation for all of the flow variables.

i0



In figures 2 and 3 the present results (7 = 1.4, diatonic gas) are compared
with exact results from the charts of reference 15 (_ = 1.405, air) for fully
frozen flow past a cone. In figure 2 the shock-wave angle is plotted against the
cone angle for a range of free-stream Machnumbers from 1.05 to I0. Also shown
in this figure are three points from reference 14 for M_ = 2.0. The present
results are found to be somewhatbetter than those of reference 14 at this Mach
number. Figure 3 showsthe variation of cone-surface pressure coefficient with
cone angle for the sameMachnumberrange. It can be seen that the equations
derived in this section are exact in the limit of zero cone angle; that is, as

8 -_ O, _ -_ sin-l(I/M_), or the shock wave becomesa Machwave. The overall
agreementbetween the present solution and exact calculations for frozen flow is
good, particularly at the higher Machnumbers.

Since the approximate solution for vibrational equilibrium flow is more
involved than for frozen flow, details of the method are given in appendix B. In
reference 16 someexact calculations were presented for vibrational equilibrium
flow of air and nitrogen past cones. Three cases for nitrogen from this refer-
ence were chosen for comparison with computations by the present method. The
results are shownin table I.

TABLEI .- VIBRATIONALEQUILIBRIUMFLOWOFNITROGENPASTA CONE

FT_': 300° K; ev = ll.12; _ = 30 deg7
L-- -J

8

i0

12

Method* _, deg 8, deg u0 P0 TO DO

Present 38.155 33.943 0.79059 0.34041 5.3460 5.7055

Exact 38.155 33.972 0.79047 0.34052 5.3481 5.7050

Present 37.159 33.475

Exact 37.159 33.499

0.80025 0.32650 7.3055 6.2569

0.80017 o.32659 7.3073 6.2570

Present 36.568 33.196 0.80593 0.31847 9.6320 6.6656

Exact 36.568 33.216 0.80586 0.31854 9.6339 6.6658

*For present method_ see appendix Bj for exact method, see reference 16.

The results in this table reveal that for the cases illustrated, the present

approximate method agrees with the exact calculations within 0.i percent. The

algebraic equations derived in this section for frozen or equilibrium flow past a

cone are special cases of the differential equations (16) to (19). The excellent

agreement with exact calculations allows some confidence in proceeding to the

case of nonequilibrium flow.
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Nonequilibrium Flow Past Wedges and Cones

In the case of nonequilibrium flow past a wedge or a cone, the attached

shock wave is curved and the flow variables undergo rapid changes both in the

shock layer and along the surface. In order to obtain the shock-wave shape and

the variation of properties along the surface, equations (16) to (19) must be

presented in a calculable form. This result is accomplished by returning to the

original variables _, Uo, PO' and EO. Combining the x-derivatives of the

energy equation (5), the equation of state (6), and the appropriate definitions

of equations (9) provide the following relations:

= uoto dEo [i 2] duodto dPo + + + (7 - I)M 0 tO _---uo _- 7_2 _- 7o (27)

( uoto o[dgO _ 1 + 7Mo + + 2 + (7 - I)M 0 t O
dx TO dx dx

(28)

It is also recognized that f5 = fs_(x)_' where f5 is again any shock-wave

function# so that

df5 _ df5 _ (29)
_x d_ _x

With the use of equations (27) to (29), equations (16) to (19) can be written as

follows:

dp 0 dE 0 du O d_

All_- + A12_--+ A13_--+ A14_ = KI (3o)

dP 0 dE 0 du O
__ + A24 d__ = K2A21L--+ A22_---+ A23_ (3l)

dlB = K3 (32)A34

dPo dE0 duo = K4 (33 )_l _--+ A42_--+ A43L--

The coefficients A and the nonhomogeneous terms K are listed in appendix C.

The necessary frozen shock-wave relations are given in appendix D.

Initial values and derivatives.- Before equations (30) to (33) can be numer-

ically integrated, the initial values of the variables and their derivatives at
x = 0 must be obtained. In order that the derivatives in equations (30) to (33)

be finite at x = O, it is necessary that K I to K4 be finite. In appendix C
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it can be seen that KI_ K2, and K 3 will be indeterminate for the wedge

(j = 0), if fo = fb' and will be indeterminate for the cone (j = i), if equa-

tions (23), (24), and (25) are satisfied. With the initial condition, at x = 0,

_o = o (34)

K4 is also indeterminate. Since the frozen shock-wave equations are used (see

the boundary condition (14b)), the existence of frozen flow throughout the shock

layer at the tip of the wedge or cone is required.

The initial derivatives can be found by resolving the indeterminate forms

of the values of K. The results for the wedge are:

%1 _--J (36)
dx /x=O d_

duql _ i j (37 )
dp5

d-_-/x=O tO d_

(38)

where

e0 2
J = t O _-- - + tO cot

_0
(39)

It can be verified that the foregoing expressions for the wedge tip gradients

are the same as the exact expressions derived in reference 17. This result is

to be expected, since all the flow variables in the wedge shock layer are con-

stant at the frozen tip, as mentioned before. Then the linear profiles assumed

in arriving at equations (30) to (33) are indeed exact at the wedge tip.

The initial derivatives for the cone are similarly found to be

_ --o
(40)

- K F

dx /x=O

(41)

15



( u01= l (2cotF3
+ cote )(FI-

_D
(42)

dEo) TO=K
_-- x=O uot O

(43)

where the symbols K, L, FI, F2_ and F3 are defined in appendix E. Equa-

tions (40) to (43) cannot be compared with exact analytical expressions for the

cone tip gradients 3 since none exist (ref. 17). The initial derivatives of

and PO calculated with equations (40) and (41) were, however, found to be in

excellent agreement with extrapolations (to x = O) of characteristics calcula-

tions (ref. 2). The calculation of supersonic flow over a pointed axisymmetric

shape by the method of characteristics must be initiated at x > O_ since the Mac_

line characteristic equations have a singularity at x = O. In reference 2 a

small but finite frozen region was assumed at the cone tip_ and the calculation

was started at the downstream boundary of this region. The comparisons for the

derivatives of u0 and EO were not so good_ and this discrepancy suggested a

reexamination of equations (30) to (33) before proceeding further.

Improvement for first approximation.- Since the surface of the wedge or

cone is a streamline, equations (2) and (4) can be applied at y = O (where

v0 = O), yielding for all x:

duo i dPo

dx to dx
(44)

and

dE--2=C--O (45)
dx u0

However, the solution of equations (30 ) to (33) for the individual derivatives

does not give such concise results. The surface velocity gradient is not simply

related to the pressure gradient as in equation (44), and dEo/dx depends not

only on cO but also on _5" This discrepancy is caused by the averaging proces_

of the integral method, and the resulting numerical errors should diminish as

higher approximations (two or more strips) are applied. An immediate improvement

for the first approximation can be made, however, by properly incorporating equa-

tions (44) and (45) in the calculation. This_operation is accomplished by

defining new variables on the surface, _0, EO, TO, and PO' as follows:

duo i dPo

dx rGo_x
(46)

16



d:o _ :0 (47)
ax _o

_0 = i + T - i M_2 - (_0 + 7 - IM_2Q02)2 2

2
_ Po

= T-o

(48)

(49)

where

m --

T0 -- PoUo (50)

:o = :eq,O - :o (51)

(52 )
Eeq, 0 = _ ev xp

L

Equations (46) to (52) then give improved distributions Uo, E0' etc. which are

consistent on the surface with the x-momentum equation, the surface-streamline

rate equation, and the pressure distribution obtained from the system of equa-

tions (5), (6), (7), (8), and (30) to (33)- These barred quantities are

referred to as corrected variables. The same corrections can be applied to

higher approximations.

Flow details and stream function.- A possible objection to the use of the

method of integral relations for calculating nonequilibrium flows is that the

linear profiles of the first approximation (see appendix A) do not give realistic

flow details between the shock wave and the surface. For this purpose the stream

function, defined to satisfy identically the continuity equation (i), is intro-

duced. Then

Along lines x = Constant,

hr j = _ ____
_x

(53)

SO y tr j
= dy (54)
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Then, if the linear profiles consistent with the first approximation are used in

equation (54),

= Y + _i i + j_ cot e)t O
6to(X sin e)J 8 2

(55)

Once the surface variables and shock-wave geometry are obtained as functions of

x by numerical integration 3 the x,y coordinates of a streamline @ = Constant

can be determined from equation (55). The first integral-approximation stream-

line pattern for nonequilibriumflow is thus obtained. If it were desired to

obtain the shock-layer details_ the equations of motion written in natural coor-

dinates (ref. 17) could be applied along the streamlines to calculate the flow

properties at points between the shock wave and the surface. However_ this pro-

cedure is considered too sophisticated for the first approximation_ and a simpler

method can be used for the present problem of vibrational relaxation.

First 3 the accuracy of equation (55) should be examined for cases of frozen

or equilibrium flow. As mentioned in a previous section_ the shock wave is

straight and the flow variables on the surface are constant on both the wedge

and cone. Then equation (21) is valid for all values of x; and for the wedge

(j = 0)_ t O = ts, and the streamlines are seen to be straight lines parallel to

the surface. For the cone (j = i) equation (23) is used for to, and the stream-

lines are

i to sin @I u8 + cot _)y2= tO sin exy - _ \v5
(56)

Since the coefficients of xy and y2 are constants, equation (56) is a family

of hyperbolas, a result obtained by Hord (ref. 18) in another approximate solu-

tion. In order to determine the orientation and asymptotes of the hyperbolas_

the axes are rotated to transform equation (56) to normal form; that is_ the

mixed-product (xy) term is eliminated. This procedure reveals that the hyper-

bolas have their line of centers normal to the cone axis at the tip and that the

cone surface is an asymptote. Furthermore, when the mixed-product coefficient

is required to vanish, it is found that

cot 2@ : _\_ + cot X (57)

Substituting from appendix D the frozen shock-wave relations (D3) and (D4) into

equation (57) allows considerable simplification, so that:

sin_ = 7_l(sin2_ - _-_)
(58)
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This approximate solution for the frozen-flow cone angle is seen to be identical
to that obtained in reference 18 by a somewhat different approach. Equation (58)

is illustrated graphically in figure 2, and it can be seen that although the

numerical accuracy of equation (58) is not good except in the region M_> 2,

< 50°, the simple functional relation has much of the character of the exact

solution. Equation (58) is exact in the limit e _ O. It appears then that the

stream function given by equation (55) may be used to obtain some first-

approximation shock-layer profiles in nonequilibrium flows past wedges and cones.

Reference i gives a good approximate algebraic solution based on the assump-

tions that V, T, and dEeq/dT are constants along a given streamline and equal

to their respective frozen-flow values. Then equations (4) and (5) can be solved

in closed form. This solution gives the local temperature and vibrational energy

at any point on a streamline in terms of the distance traveled along that stream-

line and the frozen-flow conditions at the point of entry through the shock wave.

Equation (55) gives the value of any entering streamline (y = 5) at any sta-

tion x and at any later station x determines the y coordinate of that

streamline. Knowledge of the shock-wave geometry _(x) and 8(x), together with

To(X ) (using the corrected value of TO) completes the information necessary to

construct profiles of T and E at any station x on the wedge or the cone.

RESULTS AND DISCUSSION

The complete shock-wave shape and distributions of flow variables along the

surface were obtained by programing the system of equations (5), (6), (7), (8),

and (30) to (33), together with the frozen shock-wave relations given in appen-

dix D, on the IBM 7090 electronic data processing system. Equations (46) _o (52)

were also programed to obtain the corrected surface variables, Uo, EO, TO,

and PO" The machine program was given j, M_, _x=O, and _v as initial

parameters.

One case each for the wedge and cone was chosen to compare with the previous

calculations of references i and 2. In these references, the published results

accounted for a variation in the vibrational relaxation time, T(p,T), whereas

in the present investigation, T is assumed to be constant. The authors of ref-

erence 2 (Sedney and Gerber of the Ballistics Research Laboratory, Aberdeen

Proving Ground) kindly recomputed these cases for both the wedge and cone with

constant T, which allows a direct evaluation of the present results. These

cases were as follows, both for nitrogen (T_' = 300 ° K, _v = 11.12):

(i) Wedge: j = O, M_ : 6, _x--O = 57"24° (ref. i)

(2) Cone: j = i, M_ : 12, _x:O = 53"23° (ref. 2)

The results for the first case, for a wedge angle e = 40.024 °, are illustrated

in figure 4. In figure 4(a) the shock-wave shape, _(x), and the surface pres-

sure distribution_ Po(X), as given by the present first integral approximation
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are represented by the solid curves. The corresponding constant T character-

istics results obtained by Sedney and Gerber are indicated by the circles. Fig-

ures 4(b) and 4(c) show the surface variables Eo(x), Uo(X), To(X), and Po(X).

The dashed curves in these figures show the distributions obtained without cor-

rection, while the solid curves are the corrected variables obtained from equa-

tions (46) to (52). The same breakdown and description applies to figure 5 for

the cone, where again the circles represent constant T characteristics calcula-

tions. For illustration, the reference 2 results for the cone pressure for var-

iable T are also shown in figure 5(a).

It can be seen from figures 4 and 5 that although the present method does

not give the correct asymptotes for large x, the error is not great. In refer-

ences i and 2 it was demonstrated that _ and P0 approached the equilibrium

values given by the wedge or cone similarity solutions. The shock-wave angle

approached the limit monotonically from above for both the wedge and cone, as did

the pressure on the wedge surface. The cone surface pressure in reference 2

overexpanded and slowly approached its equilibrium value from below. In the pres-

ent calculations the cone surface pressure reaches a minimum at about x = 3 and

then starts increasing 3 but the change is so gradual that it cannot be observed

on the scale of figure 5(a).

The surface flow variables EO, u0_ TO, and PO do not approach their

equilibrium-similarity values for either the wedge or cone because of the exist-

ence of an entropy layer adjacent to the surface (refs. i and 2), which is caused

primarily by the steeper initial shock-wave angle at the tip. The present cor-

rected distributions of these variables is seen to be a considerable improvement

on the method. As the dashed curves reveal_ these variables undergo an unrealis-

tic overshoot which is necessary in order for Po(X) and _(x) to level off at

large x. The vibrational driving force at the shock wave, c5, is always non-

zero and positive, with nearly the same magnitude for all values of x. In order

for all derivatives to tend toward zero as x increases_ the driving force at

the wall, CO_ ultimately becomes negative to counter the positive c$. If a

negative cO is to be obtained, E0 must overshoot its local equilibrium value,

Eeq, O. This feature of the first integral approximation was verified by imposing

lower limit on cO (c0 _ O) in the numerical example shown in figure 4. Asa

expected, all variables, including _ and P0' continued to decrease (or

increase) without bound as x increased. In higher integral approximations

(two 3 three, or more strips) the shock-wave driving force c8 would receive less

weight in the resulting system of differential equations, so that the present

corrections might not be necessary. IThe driving forces c8 and cO appear in

the expression K 4 (eq. (33)), which is defined in equation (C16) of appendix C.

Note that c5 has the coefficient (1 + j_ cot e)ps, whereas cO has the coef-

ficient PO alone.)

The initial behavior of the present solution, with the proper corrections,

is seen to be quite good for all of the variables, and is particularly valuable

2O



deg

57

56

55

54

u I v I ' I I i '

C,

b Present method

0
0

Characteristics calculation (constant _

Sedney and Gerber)

0 0 0 0 0

PO

.575

•565

, 1 1 I I I I

0 0 0 0 0 0 0 0

X

(a) Shock-wave angle and surface pressure as function of x.

Figure 4.- Nonequilibrium vibrational flow over a wedge. M_ = 6; @ = 40.024°; _v = 11.12

gen, T_' = 300 ° K).

(nitro-

21



Eo

i I I I i I I I i

.59

.58

u o

.5?

• 56

- ' I J I '_I I I '

J
J

/
/

/
/

0 0 0 0 0 0 0 0 0

I I ._... I l I . , I t

.8 1.6 2.4 3.2

(b) Vibrational energy and velocity on surface as function of

Figure 4.- Continued.

X.

4.0

22



To

I ! I ! I I I I I i

_k_ o Characteristics calculation (constant _,
5.E j _ Sedney and Gerber) -

I _ " -- Present method, uncorrected
ent method, corrected

5.6

5._ \
-_ n _ O n _ o o

\\\\\

5.2 t I _ I L I I I t

Po

5.4

5.3

5.2

5.1

5.0

--- i I i t i , I , I i
/

/
/

I
I
/

/

- / O

/! y

0
0 0 0 0 0 0 0

0

A I z 1 L. 1 L I

.8 1.6 2.4 3.2

x

(c) Temperature and density on the surface as function of

Figure 4.- Concluded.

X.

25



52.8

I l I I I I I

@ Characteristics calculation (variable T,
ref. 2)

0 Characteristics calculation (constant _,
Sedney and Gerber)

Present method

deg

i

•560

.556

Po

.552

•548

i I I I i I ' I I

)

O

- .o-o-o

,, L, I i I I I i I i
•8 1.6 2.4 3.2 4.0

(a) Shock-wave angle and surface pressure as function of x.

Figure 5.- No_quilibrlumv!brational flow over a cone. M_ = 12; 8 = 46.3580; ev = ll.12
gen, T_' = 300 ° K).

(nitro-

24



5

0

I ' I ' I _ i i

Characteristics calculation (constant _,

Sedney and Gerber)

Present method, uncorrected

Present method, corrected I-

i
/

I

/
/

/

/

/
1

/

O( I I I I L_ ,

uo

.63

.62

.61

(

.60
o

' I i _ , t ' I '

/

f
/

/

• I
/

I

/
/

/

,/

</

t 1 l I _. L i I
.8 1.6 2.4 3.2 ..0

X

(b) Vibrational energy and velocity on surface.

Figure 5-- Continued.

25



To

oO

7.0

6.6

6.2

I)

5.8 A l i J _ l A I j i
0 .8 1.6 2.4 3.2 4.0

X

(c) Temperature and density on surface.

Figure 5.- Concluded.

26



in the case of the cone. In reference 2 it was noted that a good starting

solution would be helpful in computing such cone flows with the method of

characteristics.

Streamlines and profiles of temperature and energy.- As explained previ-

ously, the first-approximation streamline pattern, equation (55), can be used

with the approximate algebraic solution of reference i to obtain T and E on

any given streamline, allowing the construction of profiles of these variables

across the shock layer. This calculation was made at two stations, x = 4 and 8,

in each of the two numerical examples presented in figures 4 and 5. In the case

of the wedge (fig. 4) the approximate streamlines were nearly straight, whereas

the cone streamlines had more visible curvature, as would be expected. For

illustration, several of the cone streamlines are plotted in figure 6 out to

x = 4 for the case presented in figure 5.

The resulting profiles of T and E are shown for the wedge and cone in

figures 7 and 8_ respectively. Also shown in these figures are the available

T-profiles taken from references i and 2_ which resulted from variable T cal-

culations. The effect of variable T is to slow the approach to equilibrium

along a streamline, although the same asymptotes (as for constant T) are reached.

Since all of the present calculations were carried out for T = Constant, a

direct comparison cannot be made between the present T-profiles and those of

references i and 2. It should be noted that_ if desired_ the present first

approximation can be easily extended to include a variation in T(p,T) similar

to that of references i and 2. The approximate stream function (eq. (55))

remains unchanged, although the calculated streamline pattern would be altered

slightly by the variable T results for _(x) and t0(x). The approximate

solution for T and E can be used to include T = T(p,T) and a variation in

dEeqldT by restricting the simplifying assumptions to constant velocity along

a streamline. Then equations (4) and (5) can be numerically integrated along a

given streamline, independent of the motion equations (ref. 2).

The present approximation shows_ at least qualitatively, the behavior of T
and E in the interior flow. Three zones are evident in figures 7 and 8: (i)

the relaxation zone behind the shock wave (ref. 17), (2) the equilibrium zone in

the interior flow, and (3) the entropy layer next to the surface (refs. i and 2).

As the distance from the tip is increased from x = 4 to x = 8, the "spreading"

of the equilibrium zone is clearly discernible.

Singularities and limitations of the method.- The present method contains

a sonic singularity in equations (30) to (33) just as in the ideal-gas, blunt-

body problems already studied with the integral method (for example, refs. i0,

ii, and 12). In the b_int-body problem, unknown initial parameters can be

adjusted to satisfy the sonic condition on each strip boundary; that is, the flow

must pass smoothly across the sonic line or point (unless the sonic point on the

surface lies at an abrupt turn of the boundary). In the present formulation for

pointed bodies with attached shocks_ the initial value problem is completely

determined when the flow variables at the tip can be expressed as Taylor series

expansions. There are no initial parameters to adjust in order to allow a smooth

transition from subsonic to supersonic flow along the surface (and along inter-

mediate strips in higher approximations). In the limited region where the shock
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wave is still attached, but subsonic flow exists behind the wave, it has been

shown that for the wedge the Taylor series representation for the flow variables

near the tip is not correct (refs. 19 and 20). This singular behavior is inde-

pendent of the nonequilibrium effects. The (exact) wedge tip gradients become

infinite at the "Croceo point" (ref. 20), where the denominator of J (eq. (39))

passes through zero. The Crocco point occurs at a shock-wave angle lying between

the angle which gives sonic flow on the wedge surface and the detachment angle.

A similar behavior is found in the present approximate expressions for the cone

tip gradients. Figure 9 helps to illustrate this point. The initial derivative

of the cone shock-wave angle is plotted against the initial shock-wave angle for

M_ = i0 in nitrogen (T_' = 300 ° K, e v = 11.12). It is seen that (d_/dX)x=O

becomes increasingly negative as the subsonic region is entered, reversing sign

ahead of the detachment angle. This phenomenon for the cone appears to be the

axisymmetric analog to the Crocco point singularity in the plane, attached-shock

flows.

Numerical integration of the present differential equations became increas-

ingly unstable as the initial shock-wave angle approached that which gives frozen-

flow sonic velocity on the cone surface. The present method was incapable of

computing a case handled successfully in reference 2; namely, _ = iO,

8x=O = 64"500, 8 = 53"82o" For this case the initial frozen-flow Mach number

on the cone surface is about 1.07.

It is believed that most of the basic procedures applied in the present

paper will carry over to problems with more complex thermodynamics. The presence

of several time or length scales (for example; coupled relaxation processes, sur-

face curvature; etc.) may present difficulties_ but no more so than with other

methods. The use of the integral method in nonequilibrium, mixed flows with

detached shock waves should give useful results, in light of the present analysis

and previous successes of the method in ideal-gas mixed flows.

CONCLUDING RI_RKS

The method of integral relations was used to calculate the vibrationally

relaxing flow of a pure diatomic gas over wedges and cones. The first (one-

strip) approximation was used to convert the exact partial differential equations

to an approximate set of ordinary equations_ which were numerically integrated

by standard procedures.

i. In order to obtain a workable solution_ integration of all of the partial

differential equations across the shock layer was necessary_ and then corrections

consistent with the surface momentum and rate equations had to be applied. In

previous applications to ideal-gas, blunt-body problems, and in certain conical-

flow problems_ one of the differential momentum equations was omitted and

replaced by an algebraic equation (the isentropic law).

2. The present approximate results for nonequilibrium flow past wedges and

cones were in excellent agreement near the tip with other calculations obtained
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by the exact numerical method of characteristics. At large distances from the

tip_ the correct asymptotes were not reached_ but the error was not great. In

view of the previously demonstrated rapid convergence of higher approximations

in ideal-gas_ mixed-flow problems_ the second approximation should yield more

accurate results at large distances with little additional computer time.

3. Since the linear profiles of the first approximation do not give realistic

details within the shock layer_ an approximate stream function was given in

closed form and was used to construct profiles of temperature and vibrational

energy across the shock layer at any distance from the tip. In the case of

frozen or equilibrium cone flow_ the approximate streamlines were hyperbolas_ a

result obtained previously by a somewhat different approach.

4. The present approximate differential equations reduced to an algebraic

system in the special cases of frozen or equilibrium flow. This solution for the

cone was found to be in good agreement with the exact solutions for both frozen

and vibrational equilibrium flow.

5- The method is limited in the present formulation to cases where the flow

in the shock layer is entirely supersonic. The approximate differential equa-

tions contain a singularity when the surface velocity is soni% and there are no

initial parameters to adjust in order to surmount this difficulty.

Lar_ley Research Center 3

National Aeronautics and Space Administration_

Langley Station_ Hampton_ Va._ May 17, 1963.
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APPENDIX A

DERIVATION OF THE FIRST INTEGRAL APPROXIMATION

The ordinary differential equations of the first integral approximation are

obtained by integrating equations (10) to (13) across the shock layer from y = 0

to y = 5. The following notation is helpful:

fo = f0 (x) = Any variable or product of variables at the
surface (y = 0)

f5 = fs(x) = Any variable or product of variables just
behind the shock wave (y = 5)

In this one-strip approximatio% linear profiles are used; for example,

(At)

and

0 5 f +f(x,y)dy = 7( 0 fs) (A2)

Leibnitz's rule for differentiation under the integral sign is applied as follows:

f0 =-- f(x,y)dy - f5 d_6
dx dx

(A3)

Substituting equations (A2) and (15) into equation (A3) gives

=- _ + + _{, 0 - fs]tan/ X (A4)Jo _xL J 2dx 2dx

Also needed are the relations

r0 = x sin @

r8 =x sin@
+ 5 cosS_

Then integration of equations (lO) to (13) from y = 0 to y = 8 is straight-

forward, and equations (16) to (19) are obtained with the help of equations (A1)

to (AS), the boundary conditions (14a) and (14b), and division by x sin 0.

Finally, the substitution _ = _ is made.
x
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APPENDIX B

APPROXIMATE SOLUTION FOR VIBRATIONAL EQUILIBRIUM CONE FLOW

Vibrational equilibrium cone flow can be calculated with the present method

as follows:

(i) The values of M_, Ov, and _ (or _) are given

(2) The conservation of mass and momentum across an oblique shock wave can

be expressed as follows:

sin _ (Bi)
PsV5 = sin(_ - _)

P5 + %V52sin2k_" - _) =5+2 sin2_- (B2)
7_

cos _ (B3)
v5 - cos(_ - _)

Equations (BI), (B2), and (B3) can be combined with the perfect-gas equation of

state (eq. (6) of main text) to yield:

Tb = _(i + 7B) (B4)

where

= tan(_ - _o)cot (B5)

and

Moo2
B =- sin2_(l - _) (B6)

5

The energy equation (on the assumption that E_ = O) is

(B7)

where

E5 = Eeq, 5 = 7 _v xp -
(B8)
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If _ (or _) has been prescribed, equations (B4) to (B$) must be solved by

trial and error by choosing _ (or _) until the T$ obtained from equation (B4)

satisfies equation (B7). When the desired accuracy is obtained_ V$ is obtained

from equation (B3), while

% _ 5,7(i + %)
7_L_

(B9)

and

l (m0)
P6

(3) The cone angle 0 must now be determined by trial and error from equa-

tions (23) 5 (25) , (26), (5), (6), and (8):

Uo = V6 c°s(8- _)_ - 2 tan(@ - _)_cot ]k + cot
(ml)

2{ cot _ + cot 8 _ 2= + P6V6 sin2(0 - _)
P0 P6 \2 cot _ + cot @/

(BI2)

u0 )
TO + E0 = I + -7

EO = Eeq;0 = _ ®v xp

7 2 Po

p0:y% T-6

-i

Bz3)

m4)

BlS)

PoUo = (cot _ + cot 0)pBV$ sin(@ - w) B16)
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APPENDIX C

com_FIcI_s in _,qUA_0NS (30) TO (33)

The coefficients in equations (30 ) to (33) are"

A11 = 7 M02

Uot 0

AI2 = TO

AI3 = + t O

AlL (i+ a_ ootJu o at_

A21 = i + 5_ M02

u0to

A22 = TO

2 Mo2)toA2 3 = (2 +

A24 (i + j_ cot 8) dg5

dz8

A3 4 = (1 + j_ cot 8)_-

(cl)

(c2)

(c3)

(c_)

(c5)

(cg)

(c7)

(c8)

(c9)

7
A41 = _ M02E0

A42 = u0t 0 +

i 2 M02) toE 0

(clo)

(Cil)

(ci2)
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KI -
x_ tan )k + j_)t 0 - (tan _ - j_)t b + 2(1 + j_ cot e)h

(C13)

K2 -
x_ tan _ + j_)u0t 0 - (tan ]k - j_)ust8 + 2(1 + j_ cot e)z6

+ tan Jk(p0 - ps_
U

(ci4)

K3 _ _

f

i {_(tan__ j_)z6 + 2(i+ j_ cot e)vsh6 - (2 + j_ cote)(po- ps)lx_ .j

K4 - uo(,x_ anx + J_)to_'o-x_ o_o+ (i+ j_oote)ps_

(ci5)

(C16)

38



APPENDIX D

FROZEN SHOCK-WAVE RELATIONS

for

Then

The frozen shock-wave relations needed throughout this work are given below

7 = 7/5 (ref. 15):

Define

m(_,M_) = M_2sin2_ (D1)

a(_,Moo) : !2-(m - i)
6

(D2)

u S = (i - a)cos 6 + a cot _ sin B

vb = -(i - a)sin B + a cot _ cos e (D_)

6m

5 + m

(D5)

35m - 5 (D6)
p_ - 4% s

du6 _ 5 cos _ sin Z a sin e (D7)

d_ 3 sin2_

dv8 _ 5 cos _ cos X a cos _ (DS)
d_ 3 sin2_

dos _ 60m cot

d_ (5 + m) 2

(D9)

dPs 5

d_ 3
sin _ cos _ (DIO)

From these equations other shock-wave quantities can easily be calculated_ for

example:
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and

dz5

z 5 = pS_6v5 = tsv 5

dt 5 dv 5

d_ - t5 d7 -+ v5
dp$ + P5

5_T

4o



APPENDIX E

DEFINITIONS OF SYMBOLS APPEARING IN EQUATIONS (40) TO (43)

The following notation is introduced as a means of simplifying equations (40)

to (43):

K = _i _ooLpOeOuO[-+ (i + tan ]_ cot 8)psesl

(El)

(1 2 )[_ F3 - (2 c°t _ + c°t 8)(FI )_L = - + _ MO 2 - F2

FI = _- ot

+ _7 Mo2F3 + (2 cot ]_ + cot (9)FI

(t+ cot @) an X d-_- + 2 + csc 2_ 3t 0 - t_

(E2)

+ 2 cot e hs)_

J

F 2 : _ cot _ + cot @)

+ csc 2_I3Uoto- u_t5 + 2 cot @ z6 + 2(P 0 - P611

Itan _ _(usts)+ 2 d_ _

dP 5
+ tan ]_ cot 0

d_

(m)

F3 = (cot _ + cot e) an _ dT- + 2 vsh _ + (2 cot _ + cot m)d_-

+ csc 2_[-z8 + 2 cot 8 vs_- cot 8(p 0 - pa I
(_,5)
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